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Biological, physical, and social systems often display qualitative
changes in dynamics. Developing early warning signals to predict
the onset of these transitions is an important goal. The current work
is motivated by transitions of cardiac rhythms, where the appearance
of alternating features in the timing of cardiac events is often a
precursor to the initiation of serious cardiac arrhythmias. We treat
embryonic chick cardiac cells with a potassium channel blocker, which
leads to the initiation of alternating rhythms. We associate this
transition with a mathematical instability, called a period-doubling
bifurcation, in a model of the cardiac cells. Period-doubling bifurcat-
ions have been linked to the onset of abnormal alternating cardiac
rhythms, which have been implicated in cardiac arrhythmias such as
T-wave alternans and various tachycardias. Theory predicts that in
the neighborhood of the transition, the system’s dynamics slow
down, leading to noise amplification and the manifestation of oscil-
lations in the autocorrelation function. Examining the aggregates’
interbeat intervals, we observe the oscillations in the autocorrelation
function and noise amplification preceding the bifurcation. We ana-
lyze plots—termed return maps—that relate the current interbeat
interval with the following interbeat interval. Based on these plots,
we develop a quantitative measure using the slope of the return map
to assess how close the system is to the bifurcation. Furthermore, the
slope of the return map and the lag-1 autocorrelation coefficient are
equal. Our results suggest that the slope and the lag-1 autocorrela-
tion coefficient represent quantitative measures to predict the onset
of abnormal alternating cardiac rhythms.
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The development of early warning signals to predict the onset of
transitions in complex systems is relevant in diverse contexts

(1), including climate change (2, 3), ecology (4, 5), population
dynamics (6–8), physiology (9, 10), and finance (11). Anticipating
the onset of these transitions remains challenging. From a math-
ematical perspective, these transitions are related to bifurcations,
whereby a change in the value of a model parameter leads to
qualitative differences in the dynamics of the system. For a number
of bifurcations, as a parameter value approaches a bifurcation
point, there is a slower return to equilibrium following a pertur-
bation. Recent studies have developed early warning signals based
on this property (1, 2, 4, 5, 6, 8, 12). Most of this work has been
based on small amounts of data; the development of statistical
indicators based on larger data sets is of considerable importance.
Transitions in the qualitative dynamics of complex systems can

be classified into two categories: noise-induced transitions and
noisy bifurcations (13). Noise-induced transitions take place when
the system’s intrinsic noise leads to a change in the dynamics.
Predicting the onset of noise-induced transitions is difficult because
the underlying properties of the system have not changed, but
rather a chance event (typically a large excursion from the steady-
state value) leads to a transition in the dynamics (3, 13). Noisy
bifurcations take place when the value of a parameter goes through
a bifurcation point, giving rise to a new dynamic. Because the
system’s dynamics can change in the neighborhood of bifurcations,
it is possible to develop early warning signals that anticipate
the transition (12). However, the parameter responsible for the

transition in dynamics must be slowly varying, a restriction on the
effectiveness of these early warning signals (14, 15).
Recent work on early warning signals has focused on developing

indicators to predict the onset of critical transitions that take place
through fold bifurcations, where, at a critical parameter value, the
system transitions from one stable steady-state value to another (1).
Although there may be practical difficulties (13, 16), increases in the
system’s variability and autocorrelation can sometimes predict the
onset of these transitions. Another phenomenon that can precede a
fold bifurcation is flickering, where the system flips back and forth
between two stable steady states near a critical parameter value (17).
However, transitions in physical, chemical, and biological systems
take place through a number of bifurcations with varying properties
near the onset of these different bifurcations (18).
In the human heart, a number of mechanisms underlie the

transition from normal cardiac rhythm to arrhythmia. The onset of
an alternating cardiac rhythm, where, for example, an alternation
in the duration of the action potential is observed, represents one
such mechanism (19, 20). These alternating rhythms can herald
the initiation of arrhythmias, including tachycardia and fibrillation
(20−22). T-wave alternans is an arrhythmia for which an alter-
nation in the T wave of the electrocardiogram is observed. Clini-
cally, the manifestation of T-wave alternans increases the patient’s
risk of sudden cardiac death (23, 24).
The mechanism underlying the transition from normal cardiac

rhythm to an alternating rhythm is linked to a mathematical in-
stability called a period-doubling bifurcation, where the period of
the system’s oscillation doubles as a consequence of a change in
the value of a model parameter (25–27). Examples of parameters
that can induce a period-doubling bifurcation in cardiac systems
include pacing frequency (28), temperature (29), and drugs (30,
31). Thus, further development of statistical measures to predict
the onset of period-doubling bifurcations is clinically relevant.
Theoretical studies have demonstrated that, near the onset of the
period-doubling bifurcation, dynamical slowing down takes place,
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giving rise to noisy precursors such as the emergence of an addi-
tional peak in the power spectrum (32, 33).
In two previous studies, we presented experimental data where

we treated spontaneously beating aggregates of embryonic chick
cardiac cells with E4031, a potassium channel blocker (31, 34).
Drug treatment led to the initiation of complex dynamics, including
alternating rhythms, bursting rhythms, accelerated rhythms, and
chaotic dynamics. We modeled and analyzed these rhythms using
numerical simulations and 1D maps (31, 34). Drug treatment also
led to the onset of period-doubling bifurcations. Here, we analyze
these period-doubling bifurcations to develop early warning signals
of these transitions in dynamics.
Analyzing the interbeat intervals, we show that, near the onset

of the period-doubling bifurcation, the system’s variability in-
creases and oscillations appear in the autocorrelation function
(ACF), observations consistent with theoretical predictions.
Analysis of return maps composed of interbeat intervals—for
which the current interbeat interval is plotted as a function of the
following interbeat interval—reveals that the linear slope of the
return map represents a quantitative measure that can assess
how close the system is to a period-doubling bifurcation. This
work demonstrates the presence of early warning signals for
transitions in noisy cardiac systems.

Results
We treated spontaneously beating aggregates of 7-d-old embry-
onic chick cardiac cells with 0.5–2.5 μmol E4031, a drug that
blocks the human Ether-à-go-go-Related Gene (hERG) potas-
sium channel (35, 36). The ovoid-shaped aggregates, with di-
ameters between 100 μm and 300 μm, beat spontaneously with
intrinsic periods between 1 s and 2 s. We monitored the activity

of the spontaneously beating aggregates by measuring the vari-
ation in light intensity of a pixel on the edge of each aggregate.
Estimates of the magnitude of the displacement of the aggregate
as a consequence of the beat (or contraction) are on the order of
∼5 μm, which is consistent with previous measurements (37). We
analyzed the beat dynamics of the aggregates by computing
interbeat intervals, the time between successive beats. Further-
more, the beat dynamics of multiple aggregates can be tracked in
parallel; Fig. S1 displays an image of a representative experi-
ment. See Materials and Methods for a full description of the
protocol used to generate the aggregates and for further details
related to how we imaged the aggregates’ beat dynamics.
Following drug treatment, the aggregates maintain their in-

trinsic beat frequency for roughly 10–55 min before a transition
in the dynamics takes place. In one of the previous papers from
our group based on this data set (34), Kim et al. proposed—using
a spatially extended ionic model of the spontaneously beating
aggregate—that diffusion of the drug within the aggregate rep-
resented a possible mechanism underlying the time dependence
of the transitions in dynamics. These transitions in qualitative
dynamics lead to a spectrum of complex rhythms. Here, we focus
on 23 aggregates for which we observe and capture period-
doubling bifurcations.
Fig. 1A displays the interbeat intervals from a representative

aggregate for which a period-doubling bifurcation takes place
following the treatment with 1.5 μmol E4031 at t = 0. The spaces
between the sets of interbeat intervals in Fig. 1A represent the
times when recording was stopped for data storage purposes
(2−3 min). The four representative time series plotted in Fig. 1A
correspond with the dynamics in the first (trace i), fourth (trace
ii), fifth (trace iii), and tenth (trace iv) sets of interbeat intervals.
In mathematics, a period-doubling bifurcation occurs when the
slope at the fixed point of a 1D map passes through −1. In this
study, we define a period-doubling bifurcation to have taken
place when the slope of a linear regression of a return map
composed of a sliding window of interbeat intervals is below
−0.98 for five consecutive beats—see Materials and Methods for
details related to the computation of the slope from the interbeat
intervals. Using the above definition, the period-doubling bi-
furcation takes place near the end of the fifth set of interbeat
intervals at approximately t = 45 min in Fig. 1A. (There are other
methods to identify the precise timing of period-doubling bi-
furcations, including identifying the time at which a sliding
window of values gives rise to a bimodal distribution.)
In the neighborhood of a period-doubling bifurcation, the system

takes longer to recover to equilibrium following a perturbation (32,
33). Hence, the system reestablishes the steady-state value less
rapidly (and in an oscillatory fashion) leading to negative correla-
tion between successive beats, which we observe in Fig. 1B—a
zoomed-in plot of the fifth set of interbeat intervals from Fig. 1A
(corresponding with the time series displayed in trace iii).
Of the aggregates we analyzed, 43 out of 104 underwent period-

doubling bifurcations. Fig. S2 displays raw interbeat interval data
from eight aggregates for which we observe and capture period-
doubling bifurcations following treatment with E4031. (See SI Text
for more details related to the observations of period-doubling bi-
furcations in the aggregates following drug treatment.) In 71 out of
104 cases, the aggregates exhibited an alternating rhythm. In 19 out
of 104 cases, the aggregates’ interbeat intervals simply decreased,
establishing a stable, accelerated rhythm. In 14 out of 104 cases, the
aggregates’ dynamics did not undergo a qualitative transition in
dynamics, maintaining their intrinsic beat frequency for the dura-
tion of the experiment; Fig. S3 displays raw interbeat interval data
from eight aggregates for which a dynamic transition did not take
place. Due to the long time course of the experiments, aggregates
could undergo multiple transitions in dynamics throughout the
course of a single experiment. In Fig. S2, aggregate i, a period-
doubling bifurcation takes place at roughly t = 40 min, leading
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Fig. 1. Period-doubling bifurcation in an aggregate of embryonic chick cardiac
cells following treatment with a potassium channel blocker. (A) Interbeat in-
tervals (IBI) through time following treatment with E4031, a potassium channel
blocker, at t= 0. There are spaces between segments of the interbeat intervals (2–
3 min in duration) for data storage reasons. A period-doubling bifurcation takes
place at approximately t = 45 min. The traces below the interbeat intervals—i, ii,
iii, and iv—represent time series corresponding with the interbeat intervals in the
first, fourth, fifth, and tenth sets of interbeat intervals. Each trace is 37.5 s in
duration. (B) A blown-up picture of the fifth set of interbeat intervals (from ap-
proximately t = 42 min to t = 48 min) corresponding with trace iii in A.
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to the onset of an alternating rhythm; then, at approximately t =
100 min, an additional transition takes place, leading to the
establishment of a stable, accelerated rhythm.
To quantify how the statistical features of the interbeat intervals

change as the system approaches the period-doubling bifurcation,
we examine the system’s noise and autocorrelation. In Fig. 2A, we
plot the return maps for the first (trace i), fourth (trace ii), and fifth
(trace iii) sets of interbeat intervals from Fig. 1A. As the system
approaches the period-doubling bifurcation, the variation of the
interbeat intervals increases and successive interbeat intervals be-
come negatively correlated. In Fig. 2B, we plot the histograms of
the detrended interbeat intervals (see Materials and Methods for
details on detrending) again for the same sets of interbeat intervals
examined above in Fig. 1A. The distributions of interbeat intervals
spread out, suggesting an amplification of the noise.
In Fig. 2C, we compute the ACF for a set of detrended inter-

beat intervals (20 beats long) centered at the 150th beat for the
same three sets of interbeat intervals we looked at above. Near the
beginning of the experiment (t= 0), because the system is far from
the bifurcation, successive interbeat intervals are uncorrelated, so
the lag-1 autocorrelation coefficient is approximately equal to
zero, as shown in the ACFs computed for trace i (Fig. 2C, Left)
and trace ii (Fig. 2C, Middle) in Fig. 2C. However, as the system
nears the bifurcation, damped oscillations emerge in the ACF,
reflecting the effect of longer recovery times following perturba-
tions in the neighborhood of the bifurcation, as shown in Fig. 2C,
Right. Noise amplification and oscillations in the autocorrelation
represent early warning signals to anticipate the onset of period-
doubling bifurcations.
In a previous study (31), we modeled the interbeat intervals

observed in the experimental data following the treatment with

E4031 using an exponential nonlinear 1D map in the absence of
noise. To analyze the early warning signals, we continuously
perturb an exponential nonlinear map as follows:

xn+1 = αeð−βðxn−γÞÞ + δ+ σζn, [1]

where xn represents the nth interbeat interval and ζn is a random
variable drawn from a normal distribution with a mean equal to
zero and an SD (σ) equal to 0.01, consistent with the fluctuations
observed in the interbeat intervals when the system is far from the
bifurcation. The parameters α, β, γ, and δ govern the shape of the
exponential map. To simulate the experiments, we study the dynam-
ics of the map as we decrease γ. The map has a unique fixed point,
which, at a critical γ, destabilizes, giving rise to a period-doubling
bifurcation. (See Materials and Methods for a description of the
numerical simulations and parameter values.)
To derive analytic expressions for both the probability density

function (PDF) and the ACF as the system approaches a period-
doubling bifurcation, we approximate the dynamics of Eq. 1
using a continuously perturbed linear 1D map, examining the
dynamical features as the slope at the fixed point (x*= 0) ap-
proaches −1. We define the noisy linear map,

xn+1 = Axn + σζn, [2]

where xn represents the deviation of the nth interbeat interval from
the mean and ζn is a random variable drawn from a normal distri-
bution with a mean of zero and an SD (σ) equal to 0.01, consistent
with the system-level noise of the experimental data. A represents
the slope of the map at the fixed point, x*. The analytic expressions
for the PDF and the ACF of a noisy linear map are well known (1,
38, 39). Iterating the map directly leads to the following series:
xn =

Pn
i=0 A

iσζn−i, which gives the PDF as n→∞ (1, 38),

fnðx;A, σÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2

2πσ2

s
exp

�
−x2

�
1−A2

�
2σ2

�
. [3]

The SD of the PDF is ςðσ,AÞ= σ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−A2

p
and grows nonlinearly

as A approaches −1. Fig. S4A shows return maps for Eq. 2 for
three values of A: −0.05, −0.65, and −0.95. In Fig. S4B, we
superimpose the analytic expressions for the PDFs as defined
by Eq. 3 for the three values of A upon histograms of data
generated by Eq. 2; the numerical simulations and the analytical
expression are in close agreement. The analytic expression for
the ACF of a noisy linear map is also well known (39),

ρðkÞ= Ak, [4]

where ρðkÞ represents the ACF at lag k. For A< 0, we observe
damped oscillations in the ACF as a function of k. Additionally,
as A approaches −1, the ACF decays to zero (no correlation) less
rapidly and the oscillations in the ACF grow in amplitude, prop-
erties consistent with experiments. In Fig. S4C, we show that the
numerically computed ACF and the analytical expression for the
autocorrelation, Eq. 4, show close agreement.
Fig. 3A shows the return maps computed from Eq. 1, the

nonlinear map, for three values of γ: 3.0, 1.75, and 1.5. Consis-
tent with the return maps displayed in Fig. 2A, as γ decreases, the
slope through the fixed point approaches −1, leading to noise
amplification and negative correlation between successive beats.
Fig. 3 B and C show that the analytic expressions for the PDF
and the ACF—where A represents the linear slope at the fixed
point—capture the noise amplification and the oscillations in the
ACF as the system approaches the period-doubling bifurcation.
As stated earlier, period-doubling bifurcations in 1D maps take

place when the slope through the fixed point of a control function
goes through −1. Thus, the slope of a linear regression of a return
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Fig. 2. Detection of noise amplification and oscillations in the ACF of the ag-
gregate’s interbeat intervals in the neighborhood of the period-doubling bi-
furcation following treatment with potassium channel blocker. (A) Return maps
of the interbeat intervals from the first (trace i), fourth (trace ii), and fifth (trace iii)
sets of interbeat intervals from Fig. 1A. (B) Histograms of 250 detrended interbeat
intervals for the three sets of interbeat intervals (traces i, ii, and iii) from Fig. 1A.
Deviation represents the deviation of each interbeat interval from themean value
computed through the detrending process. The noise amplifies as the system
approaches the period-doubling bifurcation. (C) Autocorrelation function (ACF)
for a window of 20 detrended beats centered on the 150th beat for three sets of
interbeat intervals. Damped oscillations emerge in the ACF in trace iii, consistent
with the oscillations in the interbeat intervals observed in Fig. 1B.
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map composed of a sliding window of detrended interbeat intervals
computed directly from the experimental data represents a quan-
titative measure to assess how close the system is to a period-
doubling bifurcation.
We compute the slope measure from the interbeat intervals

taken from the 23 aggregates for which we observe and capture
period-doubling bifurcations. In Fig. 4, each slope trace is computed
based on the interbeat interval trace given in the panel below. Eq. 4
predicts that the lag-1 autocorrelation coefficient should be equal to
the slope through the fixed point, A, of a 1D map: ρð1Þ=A. Hence,
we plot the lag-1 autocorrelation coefficient in Fig. 4, showing that
the slope and the lag-1 coefficient are consistent.
The red hatched lines in Fig. 4 represent the time at which the

system undergoes a period-doubling bifurcation.When the slope goes
below −0.75 for at least five consecutive beats—the early warning
signal threshold, given by the black hatched line in Fig. 4—the
period-doubling bifurcation takes place between 1 and 2,231 beats
later. Survival analysis using Kaplan–Meier curves performed for three
values of threshold—−0.9, −0.75, and −0.6—shows that −0.75 pro-
vides considerably more early warning than −0.9 (see Fig. S5 and SI
Text for a full explanation of the methods for the survival analysis).
For an early warning threshold of −0.9, half of the aggregates had
gone through the threshold within 11 beats before the transition; in
contrast, for a threshold of −0.75, half of the aggregates had gone
through the threshold within 115 beats before the transition.
To evaluate how the false positive rate changes as a function of

the early warning signal threshold, we analyze data collected from
aggregates—n = 14, totaling ∼17.5 h of recording—for which a
qualitative change in dynamics does not take place. Due to the
stops in the recording, we divide the data from the 14 aggregates
into 155 segments (1 segment = 409.6 s), and thus consider a false
positive to have taken place if the slope measure goes below the
given threshold for five consecutive beats at least once in a given
segment. For an early warning threshold of −0.75, the false positive
rate is 0.02, meaning there were 3 time segments (out of 155) for

which we observed a false positive. Hence, an early warning
threshold of −0.75 represents a balance between maximizing the
amount of early warning and minimizing the number of false pos-
itives. See Fig. S6 and SI Text for a full explanation of how we
computed the false positive rate.
We simulated the period-doubling bifurcation using Eq. 1 by

linearly decreasing the value of γ (see Materials and Methods for
further details and parameter values). To mimic the experiments,
we applied both parametric noise to γ and system-level noise as
given in Eq. 1. In Fig. 5A, we compute the slope measure, the lag-1
autocorrelation coefficient, and the value of the slope at the fixed
point given by Eq. 1 as a function of γ. Consistent with the exper-
iments, all three measures approach −1 as the system nears the
period-doubling bifurcation. The black dashed line represents the
early warning signal, and the red dashed line represents the period-
doubling bifurcation, with the same criteria given above—the early
warning signal predicts the onset of the bifurcation 69 beats in
advance. Fig. 5B gives the values of x for the system with the cor-
responding values of γ given below in Fig. 5C.

Discussion
In order for early warning signals to be practically useful, they should
provide quantitative information to make predictions (40, 41). When
the slope of a linear regression of a sliding window of detrended
interbeat intervals (also equal to the lag-1 autocorrelation co-
efficient) reaches −1, the system undergoes a period-doubling bi-
furcation. Thus, the slope and lag-1 autocorrelation coefficient
represent quantitative early warning signals that can detect oncom-
ing period-doubling bifurcations.
As the system nears the period-doubling bifurcation, the slope

and lag-1 autocorrelation coefficient approach −1 at different rates
(Fig. 4). To account for this diversity, in Fig. 5, we apply system-
level noise, parametric noise, and the dynamic influence of slowing
down to a 1D map undergoing a period-doubling bifurcation. The
interactions of all these dynamic features gives rise to the complex
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sent quantitative measures that assess how far the aggregates’ dynamics are
from a period-doubling bifurcation. (Traces i–viii) Each panel is a representative
example of an aggregate for which we observed and captured a period-dou-
bling bifurcation in the dynamics of the interbeat intervals. Each panel displaying
the slope measure (Upper) is based on the interbeat interval trace given below it
(Lower). The slope (in blue) represents the slope of a linear regression of a return
map composed of a sliding window of the previous 20 detrended interbeat in-
tervals. The lag-1 autocorrelation coefficient of the same sliding window of
detrended interbeat intervals (in red) is consistent with the slope measure. The
black hatched line represents the time at which the slope measure goes below
−0.75 for five consecutive beats, which we consider the early warning signal
threshold. The red hatched line represents the beat at which the slope first goes
below −0.98 for at least five consecutive beats, which we consider the time at
which the system goes through the period-doubling bifurcation.
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slope and lag-1 autocorrelation coefficient trajectories as the system
approaches the bifurcation, consistent with experiments.
Period-doubling bifurcations take place in higher-dimensional

models that simulate cardiac systems. In Fig. S7, we analyze a
continuously perturbed 2D map of action potential duration in the
neighborhood of a period-doubling bifurcation, and observe noise
amplification and oscillations in the ACF, consistent with the early
warning signals observed and presented for the continuously per-
turbed 1D map (1, 42). Further details related to the 2D map and
the analysis of the model are provided in SI Text.
A question remains related to the origin of the noise amplifica-

tion observed in the experiments. Recent studies examining the
onset of beat-to-beat alternations of the action potential duration
have implicated the stochastic nature of calcium release from in-
tracellular stores as influencing whole-cell dynamics near a period-
doubling bifurcation (43, 44). Furthermore, individual ion channels
open and close in a stochastic manner, and channel noise may in-
fluence interbeat interval statistics (45). Thus, drug treatment
leading to a reduction in the number of functional hERG potassium
channels over a long time scale, consistent with what we believe
occurs in these experiments, could also account for an amplification
in the noise. These represent but two possible mechanisms of noise
amplification; understanding the mechanistic properties of this
process represents a future research direction.
To date, the study of early warning signals has focused on the

nonlinear dynamics near the onset of fold bifurcations. While
these bifurcations are relevant in many fields, transitions in dynamical
systems can take place through a number of different bifurcations

(18). The development and experimental validation of early warning
signals for additional bifurcations remains an open research direction.

Materials and Methods
Treatment of Aggregates of Embryonic Chick Cardiac Cells with E4031, a
Potassium Channel Blocker. The experiments with the embryonic chicks
were carried out in accordance with the Health and Safety regulations at
McGill University. The aggregates were prepared according to the method
of DeHaan (35). The ventricles of 7-d-old White Leghorn chicken embryo
hearts were dissected and dissociated into single cells by trypsinization. The
cells were added to an Erlenmeyer flask containing a culture medium
gassed with 5% (vol/vol) CO2, 10% (vol/vol) O2, 85% (vol/vol) N2 (pH = 7.4),
and placed on a gyratory shaker for 24–48 h at 37 °C. The experiments were
conducted 2–6 h after the aggregates were plated. We optically imaged the
aggregates’ motion, recording the light-intensity variation of a pixel on the
edge of each aggregate. The edge pixel data were then processed through
a band-pass filter (cutoff frequencies: 0.1–6.5 Hz). The system used phase-
contrast imaging sampled at 40 Hz and a CCD camera (NeuroCD–SM;
RedShirtImaging, LLC) at an 80 × 80 pixel spatial resolution. Recordings
were carried out at 35–37 °C.

Detrending the Aggregates’ Interbeat Intervals. We detrend the interbeat
intervals using the detrend function inMATLAB. This function first performs a
least-squares linear regression for a sliding window of interbeat intervals.
Then the linear regression is subtracted from the raw values of the interbeat
intervals, which leaves the deviation from the regression. To compute the
histograms of the deviation from the mean in Fig. 2B and the ACFs in Fig. 2C,
we use a detrended sliding window composed of 20 beats in all cases. We
performed these analyses for larger and smaller window sizes, and the in-
crease in the SD and the oscillations in the ACF were observed robustly.

Numerical Simulations of the Nonlinear 1D Exponential Map.We simulate Eq. 1
with the following parameter values: α= − 0.804, β= − 1.115, and δ= 2.423.
In Fig. 3, we plot the return map, histogram, and ACF for three values of γ:
3.0 (Fig. 3, Left), 1.75 (Fig. 3, Middle), and 1.5 (Fig. 3, Right). For the return
maps in Fig. 3, we simulate Eq. 1 starting from a random initial condition for
5,000 values of x, and plot the return map for the last 4,000 x values. We also
apply normally distributed system-level noise with an SD σ= 0.01, consistent
with the fluctuations associated with the interbeat intervals when the sys-
tem is far away from the bifurcation. For the histograms, we plot the
deviation from the mean x value from the simulations.

Calculation of the Slope Measure and Autocorrelation for the Interbeat
Intervals near the Bifurcation. We first detrend the raw interbeat intervals
using the method given above. From the detrended data, we plot return
maps based on a slidingwindow composed of the previous 20 beats. Thenwe
compute a linear regression (least-squares) through each return map, where
our slope measure, Fig. 4, represents the slope of the linear regression. We
compute the lag-1 autocorrelation coefficient using the autocorr function
in MATLAB with a sliding window composed of the previous 20 detrended
interbeat intervals.

Calculation of the Slope Measure and Autocorrelation from the Numerical
Simulations of a 1D Map Undergoing a Period-Doubling Bifurcation. We sim-
ulate Eq. 1 while linearly decreasing the value of γ such that we simulate the
system approaching the period-doubling bifurcation. (We use the same
parameter values as given in Materials and Methods describing the nu-
merical simulations.) We apply system-level, normally distributed noise with
an SD σ = 0.01, consistent with the fluctuations associated with the interbeat
intervals when the system is far away from the bifurcation. We linearly
decrease the value of γ along the linear function γ1ðtÞ= 5.01− 0.012t for the
first 300 beats and then the linear function γ2ðtÞ= 2− 0.002t for the
remaining 50 beats, where t represents the beat number from the figure.
We apply parametric, normally distributed noise with an SD equal to 0.05 to
the value of γ, which we calculated by considering a quasi-stationary se-
quence of the slope measure from the experimental data. We compute the
slope measure and the lag-1 autocorrelation coefficient with a sliding win-
dow composed of the previous 20 values of x using the same method as
given in Materials and Methods.
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Fig. 5. Slope of a return map and the lag-1 autocorrelation coefficient
represent quantitative measures that assess how far the nonlinear map
(Eq. 1) is from the period-doubling bifurcation. (A) The slope measure (in
blue) represents the slope of a linear regression through a return map
composed of a sliding window of the previous 20 detrended values of x (as
given in B). The lag-1 autocorrelation coefficient of a sliding window
composed of the previous 20 detrended values of x (in red) is consistent
with the slope of the linear regression of the return map. Slope(γ) repre-
sents the slope of the fixed point as calculated using Eq. 1 and the current
value of γ as given in C. The black dashed line represents the early warning,
and the red hatched line represents the period-doubling bifurcation.
(B) The value of x as numerically generated by Eq. 1 as a function of time.
(C ) The value of γ as a function of time.
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